The ebook Elementary Calculus is based on material originally written by H.J. Keisler. For more information please read the copyright pages.


Extra Problems for Chapter 8

08_exp-log_functions-662.gif

08_exp-log_functions-663.gif

08_exp-log_functions-664.gif

08_exp-log_functions-665.gif

08_exp-log_functions-666.gif

08_exp-log_functions-667.gif

08_exp-log_functions-668.gif

08_exp-log_functions-669.gif

08_exp-log_functions-670.gif

08_exp-log_functions-671.gif

08_exp-log_functions-672.gif

08_exp-log_functions-673.gif

08_exp-log_functions-674.gif

08_exp-log_functions-675.gif

08_exp-log_functions-676.gif

08_exp-log_functions-677.gif

08_exp-log_functions-678.gif

08_exp-log_functions-679.gif

08_exp-log_functions-680.gif

08_exp-log_functions-681.gif

08_exp-log_functions-682.gif

08_exp-log_functions-683.gif

08_exp-log_functions-684.gif

24           A falling object of mass m is subject to a force due to gravity of - mg and a force due to air resistance of -kv, where v is its velocity. If v = 0 at time t = 0, find v as a function of time.

25            The pressure P and volume V of a gas in an adiabatic process (a process with no heat transfer) are related by the differential equation

08_exp-log_functions-685.gif

where k is constant. Solve for P as a function of V.

26            An electrical condenser discharges at a rate proportional to its charge Q, so that dQ/dt = -kQ for some constant k. If the charge at time t = 0 is Q0, find Q as a function of t.

27            Newton's Law of Cooling states that a hot object cools down at a rate proportional to the difference between the temperature of the object and the air temperature. If the object has temperature 140° an = 0, 100° at t = 10, and 80° at t = 20, find the temperature y of the object as a function of f, and find the air temperature.

08_exp-log_functions-686.gif

08_exp-log_functions-687.gif

08_exp-log_functions-688.gif

08_exp-log_functions-689.gif

08_exp-log_functions-690.gif

08_exp-log_functions-691.gif

08_exp-log_functions-692.gif

35            Find the surface area generated by rotating the curve y - sin x, 0 ≤ x ≤ π, about the x-axis.

36            Find the surface area generated by rotating the parabola y = x2, 0 ≤ x ≤ 1, about the y-axis.

37            Approximate e0.03 and give an error estimate.

38            Approximate ln (0.996) and give an error estimate.

39            Use the trapezoidal rule with Δx = 1 to approximate In 6 and give an error estimate.

40            Find the centroid of the region under the curve y = ex, 0 ≤ x ≤ 1.

41             Find the centroid of the region under the curve y = ln x, 1 ≤ x ≤ 2.

42            Find the length of the curve y = ex, 0 ≤ x ≤ 1.

43            Find the surface area generated by rotating the curve y = ex, 0 ≤ x ≤ 1, about the x-axis.

44            Obtain a reduction formula for ∫ xnex dx.

45            Prove that the function y = xx, x > 0, is continuous, using the continuity of ln x and ex

46            Let y = f(x) be a function which is continuous on the whole real line and such that for all u and v, f(u + v) = f(u)f(v). Prove that f(x) = ax where a = f(1). Hint: First prove it for x rational.

47            Prove that for all x > 0,

08_exp-log_functions-693.gif

Hint: Use the formula

08_exp-log_functions-694.gif

48            Prove that the function f(x) = (1 + 1/x)x is increasing for x > 0.

49            Show that the improper integral 08_exp-log_functions-695.gif converges. Hint: Show that the definite integrals 08_exp-log_functions-696.gif are finite and have the same standard part for all positive infinite H.

50            Show that 08_exp-log_functions-697.gif converges.

51            The inverse square law for gravity shows that an object projected vertically from the earth's surface will rise according to the differential equation

(1)

08_exp-log_functions-698.gif

Here y is the height above the earth's center. If v = dy/dt is the velocity at time t, then

08_exp-log_functions-699.gif

so Equation 1 may be written as

(2)

08_exp-log_functions-700.gif

Assume that at time t = 0, y = 4000 miles (the radius of the earth) and v = v0 (the initial velocity). Solve for velocity as a function of y. Find the escape velocity, i.e., the smallest initial velocity v0 such that the velocity v never drops to zero.


Last Update: 2010-11-25