The ebook Elementary Calculus is based on material originally written by H.J. Keisler. For more information please read the copyright pages.


Problems

Test the following series for convergence.

09_infinite_series-232.gif

09_infinite_series-233.gif

09_infinite_series-234.gif

09_infinite_series-235.gif

09_infinite_series-236.gif

09_infinite_series-237.gif

09_infinite_series-238.gif

09_infinite_series-239.gif

09_infinite_series-240.gif

09_infinite_series-241.gif

09_infinite_series-242.gif

09_infinite_series-243.gif

09_infinite_series-244.gif

09_infinite_series-245.gif

09_infinite_series-248.gif

09_infinite_series-249.gif

09_infinite_series-250.gif

09_infinite_series-251.gif

09_infinite_series-252.gif

09_infinite_series-253.gif

09_infinite_series-254.gif

09_infinite_series-255.gif

09_infinite_series-256.gif

09_infinite_series-257.gif

09_infinite_series-258.gif

09_infinite_series-259.gif

09_infinite_series-260.gif

09_infinite_series-261.gif

09_infinite_series-262.gif

09_infinite_series-263.gif

09_infinite_series-264.gif

09_infinite_series-265.gif

09_infinite_series-266.gif

Use the Integral Test to determine whether the following improper integrals converge or diverge.

09_infinite_series-267.gif

09_infinite_series-268.gif

09_infinite_series-269.gif

09_infinite_series-270.gif

09_infinite_series-271.gif

09_infinite_series-272.gif

09_infinite_series-273.gif

41            Prove that if each an is positive and Y^= i an converges, then n'= t <*l converges.

42            Using Theorem 1 (page 539), prove that a negative term series either converges or diverges to -∞.


Last Update: 2006-11-25