Lectures on Physics has been derived from Benjamin Crowell's Light and Matter series of free introductory textbooks on physics. See the editorial for more information....

Can kinetic energy ever be less than zero? Explain. [Based on
a problem by Serway and Faughn.]

2

Estimate the kinetic energy of an Olympic sprinter.

3

You are driving your car, and you hit a brick wall head on,
at full speed. The car has a mass of 1500 kg. The kinetic energy
released is a measure of how much destruction will be done to the car
and to your body. Calculate the energy released if you are traveling
at (a) 40 mi/hr, and again (b) if you're going 80 mi/hr. What is
counterintuitive about this, and what implication does this have for
driving at high speeds?

√

4

A closed system can be a bad thing - for an astronaut sealed
inside a space suit, getting rid of body heat can be difficult. Suppose
a 60-kg astronaut is performing vigorous physical activity, expending
200 W of power. If none of the heat can escape from her
space suit, how long will it take before her body temperature rises
by 6 °C(11 °F), an amount sufficient to kill her? Assume that the
amount of heat required to raise her body temperature by 1 °C is
the same as it would be for an equal mass of water. Express your
answer in units of minutes.

√

5

All stars, including our sun, show variations in their light output
to some degree. Some stars vary their brightness by a factor of
two or even more, but our sun has remained relatively steady during
the hundred years or so that accurate data have been collected.
Nevertheless, it is possible that climate variations such as ice ages
are related to long-term irregularities in the sun's light output. If
the sun was to increase its light output even slightly, it could melt
enough Antarctic ice to flood all the world's coastal cities. The total
sunlight that falls on Antarctica amounts to about 1 × 1016 watts.
Presently, this heat input to the poles is balanced by the loss of
heat via winds, ocean currents, and emission of infrared light, so
that there is no net melting or freezing of ice at the poles from year
to year. Suppose that the sun changes its light output by some small
percentage, but there is no change in the rate of heat loss by the
polar caps. Estimate the percentage by which the sun's light output
would have to increase in order to melt enough ice to raise the level
of the oceans by 10 meters over a period of 10 years. (This would be
enough to flood New York, London, and many other cities.) Melting
1 kg of ice requires 3 × 10^{3} J.

6

A bullet flies through the air, passes through a paperback book,
and then continues to fly through the air beyond the book. When
is there a force? When is there energy?

Solution, p. 159

7

Experiments show that the power consumed by a boat's engine
is approximately proportional to third power of its speed. (We assume
that it is moving at constant speed.) (a) When a boat is crusing
at constant speed, what type of energy transformation do you
think is being performed? (b) If you upgrade to a motor with double
the power, by what factor is your boat's crusing speed increased?
[Based on a problem by Arnold Arons.]

Solution, p. 159

8

Object A has a kinetic energy of 13.4 J. Object B has a mass
that is greater by a factor of 3.77, but is moving more slowly by
a factor of 2.34. What is object B's kinetic energy? [Based on a
problem by Arnold Arons.]

Solution, p. 159

9

The moon doesn't really just orbit the Earth. By Newton's
third law, the moon's gravitational force on the earth is the same as
the earth's force on the moon, and the earth must respond to the
moon's force by accelerating. If we consider the earth in moon in
isolation and ignore outside forces, then Newton's first law says their
common center of mass doesn't accelerate, i.e., the earth wobbles
around the center of mass of the earth-moon system once per month,
and the moon also orbits around this point. The moon's mass is 81
times smaller than the earth's. Compare the kinetic energies of the
earth and moon.

10

My 1.25 kW microwave oven takes 126 seconds to bring 250
g of water from room temperature to a boil. What percentage of
the power is being wasted? Where might the rest of the energy be
going?

Solution, p. 159

11

The multiflash photograph shows a collision between two pool
balls. The ball that was initially at rest shows up as a dark image
in its initial position, because its image was exposed several times
before it was struck and began moving.

By making measurements on the figure, determine whether or not energy appears to have been conserved in the collision. What systematic effects would limit the
accuracy of your test? [From an example in PSSC Physics.]

12

This problem is a numerical example of the imaginary experiment
discussed at the end of section 1.4 regarding the relationship
between energy and relative motion. Let's say that the pool balls
both have masses of 1.00 kg. Suppose that in the frame of reference
of the pool table, the cue ball moves at a speed of 1.00 m/s toward
the eight ball, which is initially at rest. The collision is head-on, and
as you can verify for yourself the next time you're playing pool, the
result of such a collision is that the incoming ball stops dead and
the ball that was struck takes off with the same speed originally
possessed by the incoming ball. (This is actually a bit of an idealization.
To keep things simple, we're ignoring the spin of the balls,
and we assume that no energy is liberated by the collision as heat or
sound.) (a) Calculate the total initial kinetic energy and the total
final kinetic energy, and verify that they are equal. (b) Now carry
out the whole calculation again in the frame of reference that is
moving in the same direction that the cue ball was initially moving,
but at a speed of 0.50 m/s. In this frame of reference, both balls
have nonzero initial and final velocities, which are different from
what they were in the table's frame. [See also homework problem
15 in ch. 4.]

13

One theory about the destruction of the space shuttle Columbia
in 2003 is that one of its wings had been damaged on liftoff by a
chunk of foam insulation that fell off of one of its external fuel tanks.
The New York Times reported on June 5, 2003, that NASA engineers had recreated the impact to see if it would damage a mock-up
of the shuttle's wing. Before last week's test, many engineers at
NASA said they thought lightweight foam could not harm the seemingly
tough composite panels, and privately predicted that the foam
would bounce off harmlessly, like a Nerf ball. In fact, the 1.7-pound
piece of foam, moving at 531 miles per hour, did serious damage.
A member of the board investigating the disaster said this demonstrated
that people's intuitive sense of physics is sometimes way
off. (a) Compute the kinetic energy of the foam, and (b) compare
with the energy of a 170-pound boulder moving at 5.3 miles per
hour (the speed it would have if you dropped it from about kneelevel).
(c) The boulder is a hundred times more massive, but its
speed is a hundred times smaller, so what's counterintuitive about
your results?

14

The figure above is from a classic 1920 physics textbook by Millikan and Gale. It represents a method for raising the water from the pond up to the water tower, at a higher level, without using a
pump. Water is allowed into the drive pipe, and once it is flowing
fast enough, it forces the valve at the bottom closed. Explain how
this works in terms of conservation of mass and energy. (Cf. example
1 on page 15.)