Lectures on Physics has been derived from Benjamin Crowell's Light and Matter series of free introductory textbooks on physics. See the editorial for more information....

Terminal velocity for falling objects

An object like a feather that is not dense or streamlined does not fall with constant acceleration, because air resistance is nonnegligible. In fact, its acceleration tapers off to nearly zero within a fraction of a second, and the feather finishes dropping at constant speed (known as its terminal velocity). Why does this happen?

Newton's first law tells us that the total force on the feather must have been reduced to nearly zero after a short time. There are two forces acting on the feather: a downward gravitational force from the planet earth, and an upward frictional force from the air. As the feather speeds up, the air friction becomes stronger and stronger, and eventually it cancels out the earth's gravitational force, so the feather just continues with constant velocity without speeding up any more.

The situation for a skydiver is exactly analogous. It's just that the skydiver experiences perhaps a million times more gravitational force than the feather, and it is not until she is falling very fast that the force of air friction becomes as strong as the gravitational force. It takes her several seconds to reach terminal velocity, which is on the order of a hundred miles per hour.




Last Update: 2009-06-21