The ebook Elementary Calculus is based on material originally written by H.J. Keisler. For more information please read the copyright pages.


Problems

09_infinite_series-782.gif

09_infinite_series-783.gif

09_infinite_series-784.gif

09_infinite_series-785.gif

09_infinite_series-786.gif

09_infinite_series-787.gif

In Problems 7-24, find a power series converging to f(x) and determine the radius of convergence.

09_infinite_series-788.gif

09_infinite_series-789.gif

09_infinite_series-790.gif

09_infinite_series-791.gif

09_infinite_series-792.gif

09_infinite_series-793.gif

09_infinite_series-794.gif

09_infinite_series-795.gif

09_infinite_series-796.gif

09_infinite_series-797.gif

09_infinite_series-798.gif

09_infinite_series-799.gif

09_infinite_series-800.gif

09_infinite_series-801.gif

09_infinite_series-802.gif

09_infinite_series-803.gif

09_infinite_series-804.gif

09_infinite_series-805.gif

25            Find the Taylor series for ln x in powers of x - 1.

26            Find the Taylor series for sin x in powers of x - π/4.

27            Use Taylor's Formula to prove that the binomial series converges to (1 + x)p when -½ ≤ x < 1. (The proof in the text shows that it actually converges to (1 + x)p for - 1 < x < 1.)

28            Let  f(x) = 0              if x = 0,

f(x) = e-1/x² if x ≠ 0,

Show that f(n)(0) = 0 for all integers n; so for x ≠ 0 the MacLaurin series converges but to zero instead of to f(x).


Last Update: 2006-11-25