The ebook FEEE  Fundamentals of Electrical Engineering and Electronics is based on material originally written by T.R. Kuphaldt and various coauthors. For more information please read the copyright pages. 
Home DC Scientific Notation and Metric Prefixes Arithmetic with Scientific Notation  
Search the VIAS Library  Index  
Arithmetic with scientific notation
(6,250,000,000,000,000,000 electrons per second) x (25 seconds) = 156,250,000,000,000,000,000 electrons passing by in 25 seconds
Using scientific notation, we can write the problem like this:
(6.25 x 10^{18} electrons per second) x (25 seconds)
If we take the "6.25" and multiply it by 25, we get 156.25. So, the answer could be written as:
156.25 x 10^{18} electrons
However, if we want to hold to standard convention for scientific notation, we must represent the significant digits as a number between 1 and 10. In this case, we'd say "1.5625" multiplied by some poweroften. To obtain 1.5625 from 156.25, we have to skip the decimal point two places to the left. To compensate for this without changing the value of the number, we have to raise our power by two notches (10 to the 20th power instead of 10 to the 18th):
1.5625 x 10^{20} electrons
What if we wanted to see how many electrons would pass by in 3,600 seconds (1 hour)? To make our job easier, we could put the time in scientific notation as well:
(6.25 x 10^{18} electrons per second) x (3.6 x 10^{3} seconds)
To multiply, we must take the two significant sets of digits (6.25 and 3.6) and multiply them together; and we need to take the two powersoften and multiply them together. Taking 6.25 times 3.6, we get 22.5. Taking 10^{18} times 10^{3}, we get 10^{21} (exponents with common base numbers add). So, the answer is:
22.5 x 10^{21} electrons
. . . or more properly . . .
2.25 x 10^{22} electrons
To illustrate how division works with scientific notation, we could figure that last problem "backwards" to find out how long it would take for that many electrons to pass by at a current of 1 amp:
(2.25 x 10^{22} electrons) / (6.25 x 10^{18} electrons per second)
Just as in multiplication, we can handle the significant digits and powersoften in separate steps (remember that you subtract the exponents of divided powersoften):
(2.25 / 6.25) x (10^{22} / 10^{18}) Slide rule Rule, slide And the answer is: 0.36 x 10^{4}, or 3.6 x 10^{3}, seconds. You can see that we arrived at the same quantity of time (3600 seconds). Now, you may be wondering what the point of all this is when we have electronic calculators that can handle the math automatically. Well, back in the days of scientists and engineers using "slide rule" analog computers, these techniques were indispensable. The "hard" arithmetic (dealing with the significant digit figures) would be performed with the slide rule while the powersoften could be figured without any help at all, being nothing more than simple addition and subtraction.


Home DC Scientific Notation and Metric Prefixes Arithmetic with Scientific Notation 