Lectures on Physics has been derived from Benjamin Crowell's Light and Matter series of free introductory textbooks on physics. See the editorial for more information....

# Newton’s Third Law

Newton created the modern concept of force starting from his insight that all the effects that govern motion are interactions between two objects: unlike the Aristotelian theory, Newtonian physics has no phenomena in which an object changes its own motion.

Is one object always the "order-giver" and the other the "order-follower"?

As an example, consider a batter hitting a baseball. The bat definitely exerts a large force on the ball, because the ball accelerates drastically. But if you have ever hit a baseball, you also know that the ball makes a force on the bat - often with painful results if your technique is as bad as mine!

How does the ball's force on the bat compare with the bat's force on the ball? The bat's acceleration is not as spectacular as the ball's, but maybe we shouldn't expect it to be, since the bat's mass is much greater. In fact, careful measurements of both objects' masses and accelerations would show that mballaball is very nearly equal to -mbatabat, which suggests that the ball's force on the bat is of the same magnitude as the bat's force on the ball, but in the opposite direction.

 a / Two magnets exert forces on each other.

Figures a and b show two somewhat more practical laboratory experiments for investigating this issue accurately and without too much interference from extraneous forces.

In the first experiment, a large magnet and a small magnet are weighed separately, and then one magnet is hung from the pan of the top balance so that it is directly above the other magnet. There is an attraction between the two magnets, causing the reading on the top scale to increase and the reading on the bottom scale to decrease. The large magnet is more "powerful" in the sense that it can pick up a heavier paperclip from the same distance, so many people have a strong expectation that one scale's reading will change by a far different amount than the other. Instead, we find that the two changes are equal in magnitude but opposite in direction: the force of the bottom magnet pulling down on the top one has the same strength as the force of the top one pulling up on the bottom one.

 b / Two people's hands exert forces on each other.

In the second experiment, two people pull on two spring scales. Regardless of who tries to pull harder, the two forces as measured on the spring scales are equal. Interposing the two spring scales is necessary in order to measure the forces, but the outcome is not some artificial result of the scales' interactions with each other. If one person slaps another hard on the hand, the slapper's hand hurts just as much as the slappee's, and it doesn't matter if the recipient of the slap tries to be inactive. (Punching someone in the mouth causes just as much force on the fist as on the lips. It's just that the lips are more delicate. The forces are equal, but not the levels of pain and injury.)

Newton, after observing a series of results such as these, decided that there must be a fundamental law of nature at work:

 Newton's third law Forces occur in equal and opposite pairs: whenever object A exerts a force on object B, object B must also be exerting a force on object A. The two forces are equal in magnitude and opposite in direction.

In one-dimensional situations, we can use plus and minus signs to indicate the directions of forces, and Newton's third law can be written succinctly as FA on B = -FB on A.

There is no cause and effect relationship between the two forces. There is no "original" force, and neither one is a response to the other. The pair of forces is a relationship, like marriage, not a back-and-forth process like a tennis match. Newton came up with the third law as a generalization about all the types of forces with which he was familiar, such as frictional and gravitational forces. When later physicists discovered a new type force, such as the force that holds atomic nuclei together, they had to check whether it obeyed Newton's third law. So far, no violation of the third law has ever been discovered, whereas the first and second laws were shown to have limitations by Einstein and the pioneers of atomic physics.

The English vocabulary for describing forces is unfortunately rooted in Aristotelianism, and often implies incorrectly that forces are one-way relationships. It is unfortunate that a half-truth such as "the table exerts an upward force on the book" is so easily expressed, while a more complete and correct description ends up sounding awkward or strange: "the table and the book interact via a force," or "the table and book participate in a force."

 c / Newton's third law does not mean that forces always cancel out so that nothing can ever move. If these two figure skaters, initially at rest, push against each other, they will both move.

To students, it often sounds as though Newton's third law implies nothing could ever change its motion, since the two equal and opposite forces would always cancel. The two forces, however, are always on two different objects, so it doesn't make sense to add them in the first place - we only add forces that are acting on the same object. If two objects are interacting via a force and no other forces are involved, then both objects will accelerate - in opposite directions!

 d / It doesn't make sense for the man to talk about using the woman's money to cancel out his bar tab, because there is no good reason to combine his debts and her assets. Similarly, it doesn't make sense to refer to the equal and opposite forces of Newton's third law as canceling. It only makes sense to add up forces that are acting on the same object, whereas two forces related to each other by Newton's third law are always acting on two different objects.

A mnemonic for using Newton's third law correctly Mnemonics are tricks for memorizing things. For instance, the musical notes that lie between the lines on the treble clef spell the word FACE, which is easy to remember. Many people use the mnemonic "SOHCAHTOA" to remember the definitions of the sine, cosine, and tangent in trigonometry. I have my own modest offering, POFOSTITO, which I hope will make it into the mnemonics hall of fame. It's a way to avoid some of the most common problems with applying Newton's third law correctly:

 A book lying on a table.

 Pushing a box up a hill.

#### Optional Topic: Newton's Third Law and Action at a Distance

Newton's third law is completely symmetric in the sense that neither force constitutes a delayed response to the other. Newton's third law does not even mention time, and the forces are supposed to agree at any given instant. This creates an interesting situation when it comes to noncontact forces. Suppose two people are holding magnets, and when one person waves or wiggles her magnet, the other person feels an effect on his. In this way they can send signals to each other from opposite sides of a wall, and if Newton's third law is correct, it would seem that the signals are transmitted instantly, with no time lag. The signals are indeed transmitted quite quickly, but experiments with electronically controlled magnets show that the signals do not leap the gap instantly: they travel at the same speed as light, which is an extremely high speed but not an infinite one.

Is this a contradiction to Newton's third law? Not really. According to current theories, there are no true noncontact forces. Action at a distance does not exist. Although it appears that the wiggling of one magnet affects the other with no need for anything to be in contact with anything, what really happens is that wiggling a magnet unleashes a shower of tiny particles called photons. The magnet shoves the photons out with a kick, and receives a kick in return, in strict obedience to Newton's third law. The photons fly out in all directions, and the ones that hit the other magnet then interact with it, again obeying Newton's third law.

Photons are nothing exotic, really. Light is made of photons, but our eyes receive such huge numbers of photons that we do not perceive them individually. The photons you would make by wiggling a magnet with your hand would be of a "color" that you cannot see, far off the red end of the rainbow. Book 6 in this series describes the evidence for the photon model of light.

Discussion Questions

 A When you fire a gun, the exploding gases push outward in all directions, causing the bullet to accelerate down the barrel. What thirdlaw pairs are involved? [Hint: Remember that the gases themselves are an object.] B Tam Anh grabs Sarah by the hand and tries to pull her. She tries to remain standing without moving. A student analyzes the situation as follows. "If Tam Anh's force on Sarah is greater than her force on him, he can get her to move. Otherwise, she'll be able to stay where she is." What's wrong with this analysis? C You hit a tennis ball against a wall. Explain any and all incorrect ideas in the following description of the physics involved: "According to Newton's third law, there has to be a force opposite to your force on the ball. The opposite force is the ball's mass, which resists acceleration, and also air resistance."

Last Update: 2009-06-21