Lectures on Physics has been derived from Benjamin Crowell's Light and Matter series of free introductory textbooks on physics. See the editorial for more information....

Newton’s First Law

We are now prepared to make a more powerful restatement of the principle of inertia.

Newton's first law
If the total force on an object is zero, its center of mass continues in the same state of motion.

In other words, an object initially at rest is predicted to remain at rest if the total force on it is zero, and an object in motion remains in motion with the same velocity in the same direction. The converse of Newton's first law is also true: if we observe an object moving with constant velocity along a straight line, then the total force on it must be zero.

In a future physics course or in another textbook, you may encounter the term "net force," which is simply a synonym for total force.

What happens if the total force on an object is not zero? It accelerates. Numerical prediction of the resulting acceleration is the topic of Newton's second law, which we'll discuss in the following section.

This is the first of Newton's three laws of motion. It is not important to memorize which of Newton's three laws are numbers one, two, and three. If a future physics teacher asks you something like, "Which of Newton's laws are you thinking of," a perfectly acceptable answer is "The one about constant velocity when there's zero total force." The concepts are more important than any specific formulation of them. Newton wrote in Latin, and I am not aware of any modern textbook that uses a verbatim translation of his statement of the laws of motion. Clear writing was not in vogue in Newton's day, and he formulated his three laws in terms of a concept now called momentum, only later relating it to the concept of force. Nearly all modern texts, including this one, start with force and do momentum later.

An elevator.

Terminal velocity for falling objects.

More general combinations of forces

It is too constraining to restrict our attention to cases where all the forces lie along the line of the center of mass's motion. For one thing, we can't analyze any case of horizontal motion, since any object on earth will be subject to a vertical gravitational force! For instance, when you are driving your car down a straight road, there are both horizontal forces and vertical forces. However, the vertical forces have no effect on the center of mass motion, because the road's upward force simply counteracts the earth's downward gravitational force and keeps the car from sinking into the ground.

Later in the book we'll deal with the most general case of many forces acting on an object at any angles, using the mathematical technique of vector addition, but the following slight generalization of Newton's first law allows us to analyze a great many cases of interest:

Suppose that an object has two sets of forces acting on it, one set along the line of the object's initial motion and another set perpendicular to the first set. If both sets of forces cancel, then the object's center of mass continues in the same state of motion.

A passenger riding the subway.

Forces on a sailboat.

A car crash.

Discussion Questions

A Newton said that objects continue moving if no forces are acting on them, but his predecessor Aristotle said that a force was necessary to keep an object moving. Why does Aristotle's theory seem more plausible, even though we now believe it to be wrong? What insight was Aristotle missing about the reason why things seem to slow down naturally?
B In the first figure, what would have to be true about the saxophone's initial motion if the forces shown were to result in continued one-dimensional motion?
C The second figure requires an ever further generalization of the preceding discussion. After studying the forces, what does your physical intuition tell you will happen? Can you state in words how to generalize the conditions for one-dimensional motion to include situations like this one?

Last Update: 2009-06-21