Lectures on Physics has been derived from Benjamin Crowell's Light and Matter series of free introductory textbooks on physics. See the editorial for more information....

# Apparent Weightlessness

If you ask somebody at the bus stop why astronauts are weightless, you'll probably get one of the following two incorrect answers:

(1) They're weightless because they're so far from the earth.

(2) They're weightless because they're moving so fast.

The first answer is wrong, because the vast majority of astronauts never get more than a thousand miles from the earth's surface. The reduction in gravity caused by their altitude is significant, but not 100%. The second answer is wrong because Newton's law of gravity only depends on distance, not speed.

The correct answer is that astronauts in orbit around the earth are not really weightless at all. Their weightlessness is only apparent. If there was no gravitational force on the spaceship, it would obey Newton's first law and move off on a straight line, rather than orbiting the earth. Likewise, the astronauts inside the spaceship are in orbit just like the spaceship itself, with the earth's gravitational force continually twisting their velocity vectors around. The reason they appear to be weightless is that they are in the same orbit as the spaceship, so although the earth's gravity curves their trajectory down toward the deck, the deck drops out from under them at the same rate.

Apparent weightlessness can also be experienced on earth. Any time you jump up in the air, you experience the same kind of apparent weightlessness that the astronauts do. While in the air, you can lift your arms more easily than normal, because gravity does not make them fall any faster than the rest of your body, which is falling out from under them. The Russian air force now takes rich foreign tourists up in a big cargo plane and gives them the feeling of weightlessness for a short period of time while the plane is nose-down and dropping like a rock.

Last Update: 2009-06-21