General Chemistry is a free introductory textbook on chemistry. See the editorial for more information....

Sodium Hydroxide

Author: Hans Lohninger, Wikipedia

Sodium hydroxide is completely ionic, containing sodium cations and hydroxide anions. The hydroxide anion makes sodium hydroxide a strong base which reacts with acids to form water and the corresponding salts, e.g., with hydrochloric acid, sodium chloride is formed:

NaOH(aq) + HCl(aq) NaCl(aq) + H2O(l)

In general such neutralization reactions are represented by one simple net ionic equation:

OH-(aq) + H3O+(aq) 2 H2O

This type of reaction with a strong acid, releases heat, and hence is referred to as exothermic. Such acid-base reactions can also be used for titrations, which is a common method to determine the concentration of acids. Another type of reaction that sodium hydroxide is involved in is with acidic oxides. The reaction of carbon dioxide has already been mentioned, but other acidic oxides such as sulfur dioxide (SO2) also react completely. Such reactions are often used to "scrub" harmful acidic gases (like SO2 and H2S) and prevent their release into the atmosphere.

2 NaOH + CO2 Na2CO3 + H2O

Sodium hydroxide slowly reacts with glass to form sodium silicate, so glass joints and stopcocks exposed to NaOH have a tendency to "freeze". Flasks and glass-lined chemical reactors are damaged by long exposure to hot sodium hydroxide, and the glass becomes frosted. Sodium hydroxide does not attack iron since iron does not have amphoteric properties. A few transition metals, however, may react with sodium hydroxide in a vigorous way.

In 1986 an aluminium road tanker in the UK was mistakenly used to transport 25% sodium hydroxide solution, causing pressurization of the contents and damage to the tanker. The pressurization was due to the hydrogen gas which is produced in the reaction between sodium hydroxide and aluminium:

2 Al(s) + 6 NaOH(aq) 3 H2(g) + 2 Na3AlO3(aq)

Unlike NaOH, the hydroxides of most metals are insoluble, and therefore sodium hydroxide can be used to precipitate metal hydroxides. One such hydroxide is aluminium hydroxide, used as a gelatinous floc to filter out particulate matter in water treatment. Aluminium hydroxide is prepared at the treatment plant from aluminium sulfate by reacting with NaOH. This reaction is highly profitable, and is hence an important synthesis reaction.

Sodium hydroxide reacts readily with carboxylic acids to form their salts and is even a strong enough base to form salts with phenols. NaOH can be used for the base-driven hydrolysis of esters (as in saponification), amides and alkyl halides. However, the limited solubility of NaOH in organic solvents means that the more soluble KOH is often preferred.


In 1998, total world production was around 45 million tonnes. North America and Asia collectively contributed around 14 million tonnes, while Europe produced around 10 million tonnes.

Sodium hydroxide is produced (along with chlorine and hydrogen) via the chloralkali process. This involves the electrolysis of an aqueous solution of sodium chloride. The sodium hydroxide builds up at the cathode, where water is reduced to hydrogen gas and hydroxide ion:

2 Na+ + 2 H2O + 2 e- H2 + 2 NaOH

To produce NaOH it is necessary to prevent reaction of the NaOH with the chlorine. This is typically done in one of three ways, of which the membrane cell process is economically the most viable.

Mercury cell process (also called the Castner-Kellner process). Sodium ions are reduced to sodium metal, which forms an amalgam with a mercury cathode; this sodium is then reacted with water to produce NaOH. There have been concerns about mercury releases, although modern plants claim to be safe in this regard.

Diaphragm cell process. Uses a steel cathode, and the reaction of NaOH with Cl2 is prevented using a porous diaphragm, often made of asbestos fibers. In the diaphragm cell process the anode area is separated from the cathode area by a permeable diaphragm. The brine is introduced into the anode compartment and flows through the diaphragm into the cathode compartment. A diluted caustic brine leaves the cell. The sodium hydroxide must usually be concentrated to 50% and the salt removed. This is done using an evaporative process with about three tonnes of steam per tonne of sodium hydroxide. The salt separated from the caustic brine can be used to saturate diluted brine. The chlorine contains oxygen and is purified by liquefaction and evaporation.

Membrane cell process. Similar to the diaphragm cell process, with a Nafion membrane to separate the cathode and anode reactions. Only sodium ions and a little water pass through the membrane. It produces a higher quality of NaOH. Of the three processes, the membrane cell process requires the lowest consumption of electric energy and the amount of steam needed for concentration of the caustic is relatively small (less than one tonne per tonne of sodium hydroxide).

An older method for sodium hydroxide production was the Leblanc process, which produced sodium carbonate, followed by roasting to create carbon dioxide and sodium oxide. This method is still occasionally used. It helped establish sodium hydroxide as an important commodity chemical.

The LeBlanc process was superseded by the Solvay process in the late 19th century.

Last Update: 2011-02-16