Wireles Networking is a practical guide to planning and building low-cost telecommunications infrastructure. See the editorial for more information....



Gao

Case study: Finding solid ground in Gao

One day's drive east from Timbuktu, in Eastern Mali, is Gao. This rural city, which seems more more like a big village, sits up the the river Niger just before it dips South crossing into Niger and onto Nigeria. The city slopes into the river gently, and has few buildings taller than two stories. In 2004, a telecentre was installed in Gao. The project's goal was to provide information to the community in the hope that a better informed community would yield a healthier and more educated citizenry.

The centre provides information via CD-ROMs, films and radio, but the cornucopic source of information for the centre is the Internet. It is a standard telecentre, with 8 computers, an all-in-one printer, scanner, fax, a telephone and a digital camera. A small two room building was built to house the telecentre. It is located a bit outside of downtown, which is not an ideal location for attracting customers, but the site was chosen because of its sympathetic host. The site received funding for all construction needed, and equipment and initial training was supplied as well. The telecentre was expected to be self-sustaining after one year.

Several months after its opening, the telecentre was attracting few customers. It used a modem to dial-up to connect to an Internet provider in the capital. This connection was too slow and unreliable, and so the funder sponsored the installation of a VSAT system. There are a number of VSAT systems now available to the region; most of these services have just recently become available. Previously only C-band (which cover a larger area than Ku-band) systems were available. Recently, fiber has been laid in almost every subway tunnel and canal throughout Europe, and thus it has supplanted the more expensive satellite services. As a result, providers are now redirecting their VSAT systems to new markets, including middle and Western Africa, and South Asia. This has led to a number of projects which use satellite systems for an Internet connection.

After the VSAT was installed, the connection provided 128 Kbps down and 64 Kbps up, and cost about $400 per month. The site was having trouble earning enough revenue to pay for this high monthly cost, so the telecentre asked for help. A private contractor was hired, who had been trained by the author to install a wireless system. This system would split the connection between three clients: a second beneficiary, a radio station, and the telecentre, each paying $140. This collectively covered the costs of the VSAT, and the extra revenue from the telecentre and the radio station would cover support and administration of the system.

The people

Though capable and willing, the author's team did not do the actual installation. Instead, we encouraged the telecentre to hire the local contractor to do it. We were able to reassure the client by agreeing to train and support the contractor in the fulfillment of this installation. The premise of this decision was to discourage a reliance on a short-term NGO, and rather to build trust and relationships between domestic service providers and their clients. This design proved to be fruitful. This approach took much more time from the author's team, perhaps twice as much, but this investment has already begun to pay-off. Networks are still being installed and the author and his team are now home in Europe and North America.

Design choices

Initially, it was conceived that a backbone connection would be made to the radio station, which already had a 25 meter tower. That tower would be used to relay to the other clients, avoiding the need to install towers at the client sites, as this tower was well above any obstacles in the city. To do this, three approaches were discussed: installing an access point in repeater mode, using the WDS protocol, or using a mesh routing protocol. A repeater was not desirable as it would introduce latency (due to the one-armed repeater problem) to an already slow connection. VSAT connections need to send packets up to the satellite and back down, often introducing up to 3000 ms in delay for a round trip. To avoid this problem, it was decided to use one radio to connect to clients, and a second radio for to the dedicated backbone connection. For simplicity it was decided to make that link a simple bridge, so that the access point at the radio station would appear to be on the same physical LAN as the telecentre.

In testing this approach functioned, though in the real world, its performance was dismal. After many different changes, including replacing the access points, the technician decided that there must be a software or hardware bug affecting this design. The installer then decided to place the access point at the telecentre directly using a small 3 meter mast, and to not use a relay site at the radio station. The client sites also required small masts in this design. All sites were able to connect, though the connections were at times too feeble, and introduced massive packet loss.

Later, during the dust season, these connections became more erratic and even less stable. The client sites were 2 to 5 km away, using 802.11b. The team theorized that the towers on either side were too short, cutting off too much of the Fresnel zone. After discussing many theories, the team also realized the problem with the performance at the radio station: the radio frequency 90.0 MHz was about the same as the frequency of the high-speed (100BT) Ethernet connection. While transmitting, the FM signal (at 500 watts) was completely consuming the signal on the Ethernet cable. Thus, shielded cable would be required, or the frequency of the Ethernet link would need to be changed. The masts were then raised, and at the radio station the speed of the Ethernet was changed to 10 Mbps. This changed the frequency on the wire to 20 MHz, and so avoided interference from the FM transmission. These changes resolved both problems, increasing the strength and reliability of the network. The advantage of using mesh or WDS here would be that client sites could connect to either access point, either directly to the telecentre to the radio station. Eventually, removing the reliance on the radio station as a repeater likely made the installation more stable in the longer-term.

Financial model

The satellite system used at this site cost approximately $400 per month. For many IT for Development projects this expensive monthly cost is difficult to manage. Typically these projects can purchase equipment and pay for the establishment of a wireless network, but most are not able to pay for the cost of the network after a short period of time (including the recurring Internet costs and operational costs). It is necessary to find a model where the monthly costs for a network can be met by those who use. For most community telecenters or radio stations, this is simply too expensive. Often, the only feasible plan is to share the costs with other users. To make the Internet more affordable, this site used wireless to share the Internet to the community, allowing a greater number of organizations to access the Internet while reducing the cost per client.

Typically in Mali, a rural community has only a few organizations or companies that could afford an Internet connection. Where there are few clients, and the Internet connection cost is high, the model developed by his team included anchor clients: clients whom are solid and are low-risk. For this region, foreign NGOs (Non Governmental Organizations), the United Nations Agencies and large commercial enterprises are among the very few whom qualify.

Among the clients selected for this project were three anchor clients, who collectively paid the entire monthly cost of the satellite connection. A second beneficiary, a community radio station, was also connected. Any revenue earned from the beneficiaries contributed to a windfall, or deposit for future costs, but was not counted upon due to the small margins that both of these community services operated on. Those clients could be disconnected and could resume their service once they can afford it again.

Training needed: who, what, for how long

The contractor taught the telecentre technician the basics of supporting the network, which was fairly rudimentary. Any non-routine work, such as adding a new client, was contracted out. Therefore it was not imperative to teach the telecentre staff how to support the system in its entirety.

Lessons learned

By sharing the connection, the telecentre is now self-sustaining, and in addition, three other sites have Internet access. Though it takes more time and perhaps more money, it is valuable to find the right local talent and to encourage them to build relationships with clients. A local implementor will be able to provide the follow-up support needed to maintain and expand a network. This activity is building local expertise, and demand, which will allow subsequent ICT projects to build on this base.




Last Update: 2007-01-24