Wireles Networking is a practical guide to planning and building low-cost telecommunications infrastructure. See the editorial for more information....

East Africa

Case study: Commercial deployments in East Africa

Describing commercial wireless deployments in Tanzania and Kenya, this chapter highlights technical solutions providing solid, 99.5% availability Internet and data connectivity in developing countries. In contrast to projects devoted to ubiquitous access, we focused on delivering services to organizations, typically those with critical international communications needs. I will describe two radically different commercial approaches to wireless data connectivity, summarizing key lessons learned over ten years in East Africa.


In 1995, with Bill Sangiwa, I founded CyberTwiga, one of the first ISPs in Africa. Commercial services, limited to dialup email traffic carried over a 9.6 kbps SITA link (costing over $4000/month!), began in mid-1996. Frustrated by erratic PSTN services, and buoyed by a successful deployment of a 3node point-multipoint (PMP) network for the Tanzania Harbours authority, we negotiated with a local cellular company to place a PMP base station on their central mast. Connecting a handful of corporations to this WiLan proprietary

2.4 GHz system in late 1998, we validated the market and our technical capacity to provide wireless services.

As competitors haphazardly deployed 2.4 GHz networks, two facts emerged: a healthy market for wireless services existed, but a rising RF noise floor in

2.4 GHz would diminish network quality. Our merger with the cellular carrier, in mid-2000, included plans for a nationwide wireless network built on the existing cellular infrastructure (towers and transmission links) and proprietary RF spectrum allocations.

Infrastructure was in place (cellular towers, transmission links, etc.) so wireless data network design and deployment were straightforward. Dar es Salaam is very flat, and because the cellular partner operated an analog network, towers were very tall. A sister company in the UK, Tele2, had commenced operations with Breezecom (now Alvarion) equipment in 3.8/3.9 GHz, so we followed their lead.

By late 2000, we had established coverage in several cities, using fractional E1 transmission circuits for backhaul. In most cases the small size of the cities connected justified the use of a single omnidirectional PMP base station; only in the commercial capital, Dar es Salaam, were 3-sector base stations installed. Bandwidth limits were configured directly on the customer radio; clients were normally issued a single public IP address. Leaf routers at each base station sent traffic to static IP addresses at client locations, and prevented broadcast traffic from suffocating the network. Market pressures kept prices down to about $100/month for 64 kbps, but at that time (mid/late 2000) ISPs could operate with impressive, very profitable, contention ratios. Hungry applications such as peer-peer file sharing, voice, and ERPs simply did not exist in East Africa. With grossly high PSTN international charges, organizations rapidly shifted from fax to email traffic, even though their wireless equipment purchase costs ranged from $2000-3000.

Technical capabilities were developed in-house, requiring staff training overseas in subjects such as SNMP and UNIX. Beyond enhancing the company skills set, these training opportunities generated staff loyalty. We had to compete in a very limited IT labor market with international gold mining companies, the UN, and other international agencies.

To insure quality at customer sites, a top local radio and telecoms contractor executed installations, tightly tracking progress with job cards. High temperatures, harsh equatorial sunlight, drenching rain, and lightning were among the environmental insults tossed at outside plant components; RF cabling integrity was vital.

Customers often lacked competent IT staff, burdening our employees with thetaskofconfiguring many species of network hardware and topology.

Infrastructure and regulatory obstacles often impeded operations. The cellular company tightly controlled towers, so that if there was a technical issue at a base station hours or days could pass before we gained access. Despite backup generators and UPS systems at every site, electrical power was always problematic. For the cellular company, electrical mains supplies at base stations were less critical. Cellular subscribers simply associated with a different base station; our fixed wireless data subscribers went offline.

On the regulatory side, a major disruption occurred when the telecoms authority decided that our operation was responsible for disrupting C-band satellite operations for the entire country and ordered us to shut down our network.

Despite hard data demonstrating that we were not at fault, the regulator conducted a highly publicized seizure of our equipment. Of course the interference persisted, and later was determined to emanate from a Russian radar ship, involved in tracking space activities. We quietly negotiated with the regulator, and ultimately were rewarded with 2 x 42 MHz of proprietary spectrum in the 3.4/3.5 GHz bands. Customers were switched over to dialup in the month or so it took to reconfigure base stations and install new CPE.

Ultimately the network grew to about 100 nodes providing good, although not great, connectivity to 7 cities over 3000+km of transmission links. Only the merger with the cellular operator made this network feasible—the scale of the Internet/data business alone would not have justified building a data network of these dimensions and making the investments needed for proprietary frequencies. Unfortunately, the cellular operator took the decision to close the Internet business in mid-2002.


In early 2003 I was approached by a Kenyan company, AccessKenya, with strong UK business and technical backup to design and deploy a wireless network in Nairobi and environs. Benefiting from superb networking and business professionals, improved wireless hardware, progress in internet-working, and bigger market we designed a high availability network in line with regulatory constraints.

Two regulatory factors drove our network design. At the time in Kenya, Internet services were licensed separately from public data network operators, and a single company could not hold both licenses. Carrying traffic of multiple, competing ISPs or corporate users, the network had to operate with total neutrality. Also, “proprietary” frequencies, namely 3.4/3.5 GHz, were not exclusively licensed to a single provider, and we were concerned about interference and the technical ability/political will of the regulator to enforce. Also, spectrum in 3.4/3.5 GHz was expensive, costing about USD1000 per MHz per year per base station. Restated, a base station using 2 x 12 MHz attracted license fees of over $10,000 year. Since Nairobi is a hilly place with lots of tall trees and valleys, wireless broadband networks demanded many base stations. The licensing overheads simply were not sensible. In contrast, 5.7/5.8 GHz frequencies were subject only to an annual fee, about USD 120, per deployed radio.

To meet the first regulatory requirement we chose to provide services using point-point VPN tunnels, not via a network of static IP routes. An ISP would deliver a public IP address to our network at their NOC. Our network conducted a public-private IP conversion, and traffic transited our network in private IP space. At the customer site, a private-public IP conversion delivered the globally routable address (or range) to the customer network.

Security and encryption added to network neutrality, and flexibility, as unique sales properties of our network. Bandwidth was limited at the VPN tunnel level. Based on the operating experience of our sister UK company, VirtualIT, we selected Netscreen (now subsumed under Juniper Networks) as the vendor for VPN firewall routers.

Our criteria for wireless broadband equipment eliminated big pipes and feature-rich, high performance gear. Form factor, reliability, and ease of installation and management were more important than throughput. All international Internet connections to Kenya in 2003, and at this writing, are carried by satellite. With costs 100X greater than global fiber, satellite connectivity put a financial ceiling on the amount of bandwidth purchased by end-users. We judged that the bulk of our user population required capacity on the order of 128 to 256 kbps. We selected Motorola's recently introduced Canopy platform in line with our business and network model.

Broadband Access, Ltd., went live in July 2003, launching the “Blue” network. We started small, with a single base station. We wanted demand to drive our network expansion, rather than relying on a strategy of building big pipes and hoping we could fill them.

Canopy, and third-party enhancements such as omnidirectional base stations, permitted us to grow our network as traffic grew, softening initial capital expenditures. We knew the tradeoff was that as the network expanded, we would have to sectorize traffic and realign client radios. The gentle learning curve of a small network paid big dividends later. Technical staff became comfortable with customer support issues in a simple network environment, rather than have to deal with them on top of a complex RF and logical framework. Technical staff attended two-day Motorola training sessions.

A typical PMP design, with base stations linked to a central facility via a Canopy high-speed microwave backbone, the network was deployed on building rooftops, not antenna towers. All leases stipulated 24x7 access for staff, mains power and, critically, protected the exclusivity of our radio frequencies. We did not want to restrict landlords from offering roof space to competitors, rather to simply guarantee that our own services would not be interrupted.

Rooftop deployments provided many advantages. Unlimited physical access, unconstrained by night or rain, helped meet the goal of 99.5% network availability. Big buildings also housed many big clients, and it was possible to connect them directly into our core microwave network. Rooftop sites did have the downside of more human traffic—workers maintaining equipment (a/c) or patching leaks would occasionally damage cabling. As a result all base stations were set up with two sets of cabling for all network elements, a primary and a spare.

Site surveys confirmed radio path availability and client requirements. Survey staff logged GPS positions for each client, and carried a laser range-finder to determine height of obstacles. Following receipt of payment for hardware, contractors under the supervision of a technical staffer performed installations. Canopy has the advantage that the CPE and base station elements are light, so that most installations do not need extensive civil works or guying. Cabling Canopy units was also simple, with outdoor UTP connecting radios directly to customer networks. Proper planning enabled completion of many installations in less than an hour, and contractor crews did not need any advanced training or tools.

As we compiled hundreds of customer GPS positions we began to work closely with a local survey company to overlay these sites on topographical maps. These became a key planning tool for base station placement.

Note that the point-point VPN tunnel architecture, with its separate physical and logical layers, required clients to purchase both wireless broadband and VPN hardware. In order to tightly control quality, we categorically refused to permit clients to supply their own hardware—they had to buy from us in order to have service and hardware guarantees. Every client had the same hardware package. Typical installations cost on the order of USD 2500, but that compares to the $500-600 monthly charges for 64 to 128 kbps of bandwidth. A benefit of the VPN tunnel approach was that we could prevent a client's traffic from passing over the logical network (i.e. if their network was hit by a worm or if they didn't pay a bill) while the radio layer remained intact and manageable.

As it grew from one base station to ten, and service was expanded to Mombasa, the network RF design evolved and wherever possible network elements (routers) were configured with fallover or hot swap redundancy. Major investments in inverters and dual conversion UPS equipment at each base station were required to keep the network stable in the face of an erratic power grid. After a number of customer issues (dropped VPN connections) were ascribed to power blackouts, we simply included a small UPS as part of the equipment package.

Adding a portable spectrum analyzer to our initial capital investment was costly, but hugely justified as we operated the network. Tracing rogue operators, confirming the operating characteristics of equipment, and verifying RF coverage enhanced our performance.

Fanatical attention to monitoring permitted us to uptweak network performance, and gather valuable historical data. Graphed via MRTG or Cacti (as described in chapter six), parameters such as jitter, RSSI, and traffic warned of rogue operators, potential deterioration of cable/connectors, and presence of worms in client networks. It was not uncommon for clients to claim that service to their site had been interrupted for hours/days and demand a credit.

Historical monitoring verified or invalidated these claims.

The Blue network combined a number of lessons from Tanzania with improved RF and networking technologies.

Lessons learned

For the next few years satellite circuits will provide all international Internet connectivity in East Africa. Several groups have floated proposals for submarine fiber connectivity, which will energize telecommunications when it happens. Compared to regions with fiber connectivity, bandwidth costs in East Africa will remain very high.

Wireless broadband networks for delivery of Internet services therefore do not need to focus on throughput. Instead, emphasis should be placed on reliability, redundancy, and flexibility.

Reliability for our wireless networks was our key selling point. On the network side this translated into sizable investments in infrastructure substitution, such as backup power, and attention to details such as crimping and cabling. The most ordinary reasons for a single customer to lose connectivity were cabling or crimping issues. Radio failures were essentially unheard of. A key competitive advantage of our customer installation process is that we pushed contractors to adhere to tight specifications. It was common for well-managed customer sites to remain connected for hundreds of days with zero unscheduled downtime. We controlled as much of our infrastructure as possible (i.e building rooftops).

As attractive as potential alliances with cellular providers seem, in our experience they raise more problems than they solve. In East Africa, Internet businesses generate a fraction of the revenue of mobile telephony, and so are marginal to the cellular companies. Trying to run a network on top of infrastructure that doesn't belong to you and is, from the point of view of the cellular provider, a goodwill gesture, will make it impossible to meet service commitments.

Implementing fully redundant networks, with fail-over or hotswap capability is an expensive proposition in Africa. Nonetheless the core routers and VPN hardware at our central point of presence were fully redundant, configured for seamless fail-over, and routinely tested. For base stations we took the decision not to install dual routers, but kept spare routers in stock. We judged that the 2-3 hours of downtime in the worst case (failure at 1AM Sunday morning in the rain) would be acceptable to clients. Similarly weekend staff members had access to an emergency cupboard containing spare customer premises equipment, such as radios and power supplies.

Flexibility was engineered into both the logical and RF designs of the network. The point-to-point VPN tunnel architecture rolled out in Nairobi was extraordinarily flexible in service of client or network needs. Client connections could be set to burst during off-peak hours to enable offsite backup, as a single example. We could also sell multiple links to separate destinations, increasing the return on our network investments while opening up new services (such remote monitoring of CCTV cameras) to clients.

On the RF side we had enough spectrum to plan for expansion, as well as cook up an alternative radio network design in case of interference. With the growing number of base stations, probably 80% of our customer sites had two possible base station radios in sight so that if a base station were destroyed we could restore service rapidly.

Separating the logical and RF layers of the Blue network introduced an additional level of complexity and cost. Consider the long-term reality that radio technologies will advance more rapidly than internetworking techniques. Separating the networks, in theory, gives us the flexibility to replace the existing RF network without upsetting the logical network. Or we may install a different radio network in line with evolving technologies (Wimax) or client needs, while maintaining the logical network.

Finally, one must surrender to the obvious point that the exquisite networks we deployed would be utterly useless without unrelenting commitment to customer service. That is, after all, what we got paid for.

More information

Last Update: 2007-01-25